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ABSTRACT

We describe an asymptotic analysis of the coupled nonlinear system of equations describing
time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and
radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a
consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this
coupled nonlinear system of equations in a medium of specified initial isotopic composition. The
analysis demonstrates that to leading order the neutron transport equation limits to the standard
time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are
determined by the standard system of ordinary differential equations, the so-called Bateman equations,
describing the temporal evolution of the nuclide number densities.
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1. INTRODUCTION

The accurate modelling of isotopic depletion and decay in a nuclear reactor core is important for several
reasons. Isotopic depletion significantly affects the operating life of the reactor core fuel, the expected
energy production over the life of the reactor core fuel, the core power distribution, and the stability and
control of the reactor core [2, 3]. The coupled computation of the time-dependent neutron angular flux and
the isotopic number densities in a nuclear reactor is a mathematically nonlinear problem: the
time-dependent neutron angular flux depends on the time-dependent isotopic composition and vice versa.
As a result of the computational expense of solving this coupled neutron angular flux and isotopic
composition system using a neutron transport-based calculation (e.g. a discrete ordinates or spherical
harmonics approximation), the neutron diffusion approximation is often used as a more computationally
efficient alternative.

Asymptotic analysis methods have been used to theoretically investigate neutron transport problems for
over thirty-five years. The earliest work referenced in the literature is the unpublished work of

Matkowsky [4] and Habetler and Matkowsky [5], eventually leading to the publication of Ref. [6]. Larsen
and Keller [1], Larsen [7], and others continued and expanded this work during the 1970’s as detailed in the
review article by Larsen [10]. The main focus of this early asymptotic analysis was as an approximate
theoretical method for obtaining solutions of neutron transport problems. This early work also theoretically
clarified the conditions under which neutron transport theory limits to neutron diffusion theory. In the
intervening decades, the applications of asymptotic analysis to neutron transport problems have become
more diverse. Asymptotic analysis has been employed to derive the planar geomapgrBximation
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from planar geometry transport theory [11] and the multidimensional simplifiegpproximation [12, 13]

from multidimensional transport theory. Asymptotic methods have also been used to theoretically
investigate the behavior of spatial discretization schemes for the discrete ordinates equations [see Ref. [14]
and the references contained therein]. As an aside, we note that asymptotic methods have also been
successfully applied to the analysis of radiative transfer and charged patrticle transport problems.

While the application of asymptotic methods to neutron transport problems has served to clarify the
connection between neutron transport theory and neutron diffusion theory, to our knowledge the equations
describing the temporal evolution of the isotopic number densities have never been directly included in
these asymptotic analyses. In previous asymptotic analyses of time-dependent neutron transport, the
material properties of the background medium (i.e. macroscopic total, absorption, and scattering cross
sections) have either been assumed independent of time [1, 6, 8] or have been postulated to be slowly
varying functions of time [9]. The time dependence of these material properties is in reality explicitly
determined by the time dependence of the isotopic number densities present in the background medium.
Given that the neutron angular flux and the isotopic number densities interact in a nonlinear manner,
directly including these effects in a theoretical analysis of the system seems prudent. The work we describe
in this paper is a first step towards directly including the equations describing isotopic depletion and decay
in an asymptotic analysis of neutron transport theory. Further strengthening the theoretical foundation of
the neutron diffusion approximation coupled with the equations describing isotopic depletion and
radioactive decay is important given the fundamental and ubiquitous role this model plays in nuclear
reactor design and analysis.

In this paper, we consider time-dependent monoenergetic neutron transport in a three-dimensional medium.
Different than previous work, however, we consider a background medium that is initially composed of a
specified isotopic composition. For the mathematical statement of the physical problem to be fully
specified, the neutron transport equation must be coupled to a system of first-order differential equations
describing the temporal evolution of the isotopic number densities. Both the neutron transport equation and
the so-called Bateman equations describing the depletion and radioactive decay of the isotopes present are
nonlinear. Using the classic asymptotic diffusion limit scaling [1, 14], we demonstrate that neutron

transport theory for this system asympotically limits to the standard time-dependent neutron diffusion
approximation with macroscopic cross sections whose isotopic number densities are determined by the
standard system of ordinary differential equation describing the temporal evolution of the nuclide number
densities.

The remainder of this paper is organized as follows. In Section 2, we describe the mathematical
specification of the neutron transport problem to be solved. We then recast the problem into a form that is
amenable to the application of the classic asymptotic diffusion scaling. Finally, we outline the asymptotic
analysis of the neutron transport problem. We conclude with a brief discussion in Section 3.
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2. ASYMPTOTIC ANALYSIS

We consider the following time-dependent monoenergetic neutron transport problem defined in a
three-dimensional isotropically-scattering medium in the spatial dofain

(20 QT (10,0 + 5 (1) 0 (r,0,1) =
1 o
Mzs(r,t)lwlﬂ(r,ﬁ,t)dﬁ +EQ(£,t) ,reD,t>0, (1)
w(zvgvt):f(faﬂat) ) KGOD s Q'Q<O, t>0 R (2)
Y (r,,0)=g(,Q) , reD . 3)

Here we have used standard neutronics notation [21&}n] is the three-dimensional Cartesian spatial
variable; is a unit vector describing the direction of neutron flighfis] is the time variablep [em/s] is

the neutron speed of flight) (r, Q, t) [neutrons/cm? — steradian — s] is the angular flux (neutron
density preutrons/em? — steradian] multiplied by the neutron speed of flight[cm/s]) of neutrons at
positionr moving with speed in direction{? at timet; 3, (r,t) [em~!] is the macroscopic total cross
section at positiom and timet describing the probability per unit path length of a neutron interacting with
the background mediun;, (r,t) [cm~!] is the macroscopic isotropic scattering cross section describing
the probability per unit path length of a neutron at posittamdergoing a scattering reaction; adr, ¢)
[neutrons/cm?® — s]is an external volumetric source of neutrons at positi@md timet. Heref (r, 2, t)
[neutrons/cm? — steradian — s] is a prescribed incident angular flux on the boundary of the spatial
domaindD, andn is a unit outward normal on the boundary of the system. Finally, 2)

[neutrons/cm? — steradian — s] is a prescribed angular flux initial condition.

We assume that the background medium is initially composed of a known isotopic composition. We also
assume thaf distinct nuclide species exist that are either present initially or that can be created by isotopic
depletion and accretion or by radioactive decay. We denote the number densit}] pf the i*" nuclide at
positionr and timet asN; (r, t) and thel x 1 vector function of all nuclide number densitiesSigr, t).

A neutron and an atom of a specific nuclide can undergo either a scattering reaction or an absorption
reaction. A scattering reaction changes the direction of the neutron exiting the collision but does not alter
the isotope of the background nuclide. We denote the microscopic scattering cross section for msclide

ol [em?] and thel x 1 vector of microscopic scattering cross sections for all nuclide specigs s

absorption reaction can be one of several reaction types suchyasdpture, (n,p), (my), etc. An

absorption reaction results in the removal of the incident neutron, a conversion of the nucleus undergoing
the reaction to another isotope, and the accretion of an additional atom of the created isotope (we assume
that all reaction residual products are deposited locally and instantaneously, e.g. a helium-4 atom in the
case of an (iy) reaction). We denote the microscopic absorption cross section for nuctifiécm?], as

the sum of all capture reactions and the 1 vector of microscopic absorption cross sections for all

nuclide species as,. We assume that microscopic cross sections are independent of time, i.e. no neutron
spectrum or self-shielding effects [2] are present. The macroscopic cross section for a general reaction type
x (x = s, a) can then be written in vector notation as

2y (r,t) = NT (r,t) 0p - 4
The macroscopic total cross section is the sum of the macroscopic scattering and absorption cross sections:

By (r,t) =3, (1) + 5 (1) (5)
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Using Egs. (4) and (5), we rewrite Eq. (1) as

%MT(Lt) (01— 04a) /4W¢(T,Q’,t) dQ’+iQ(Lt) . (8

™

The equations describing the transport of neutrons, Eq. (6) and Egs. (2) and (3), are coupled to equations
describing the temporal evolution of the isotopic composition of the background medium through which
the neutrons are propagating, the so-called Bateman equations. The temporal evolition ©fis given

by [2, 3]

ON@E)=ANG) [ w20+ AN | ©

£ i &

with the initial condition

N (r,0)=Ny(r) - (8)

In Egs. (7), the elements of tHex I absorption matri4 are given by

—0 =]
aij = ) 9)
! { fijoa  i#j

wheref;; is the fraction of neutron absorptions by nuclide spegitsat leads to the formation of nuclide
species. The diagonal terms of the matrik correspond to the depletion of the given nuclide as a result of
isotopic burnup. The off-diagonal terms correspond to the production of the given nuclide as a result of
isotopic depletion of other isotopes. Also in Egs. (7), the elements df thé radioactive decay matrix
are given by a

_ _)\] ) i = j )

N ‘{ bihi 147, (10)
where); is the radioactive decay constast ] of nuclide j, and¢;; is the fraction of decays of nuclide
specieg that leads to the formation of nuclide specie¥he diagonal terms of the radioactive decay
matrix A correspond to the loss of the given nuclide as a result of radioactive decay. The off-diagonal terms
correspond to the production of the given nuclide as a result of radioactive decay of other isotopes. The
coupled computation of the time-dependent neutron angular flux from Eq. (6) and the isotopic number
densities from Egs. (7) is a nonlinear mathematical problem.

To proceed with the asymptotic analysis, we first decompose the initial value of a macroscopic cross
section for a general reaction typeX,, (r,0), into “typical” number density and microscopic cross
section values that we denote(@é (r)) [cm 3] and (o) [ecm?], respectively, such that

Y, (r,0) = (N (r)) (6z). We next define a dimensionless number density for nuclide speages

Ni (r,t) = N; (r,t) / (N (r)) and a dimensionless microscopic cross section for nuckatel reaction
typez asé’ = ol / (o,). We then rewrite the macroscopic cross section of typs

S, (1,8) = N (1,1) 6%, (r,0) - (11)
Using Eq. (11), we rewrite Eq. (6) as
10 o7 .
v “t
1 - 1
ZMT (f? t) @ Et (£7 0) - a-a Za (£7 O)] / ﬂ) (fa Ql> t) dQ/ + ZQ (ﬁa t) ) (12)
7 - A T
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and Egs. (7) as

DK (1) =

il AN (r, )%, (r,0) [ ¢(r,Q,t)d2+AN(r,t) , (13)

(N () T

where the elements of the dimensionless absorption rrétaive given by

by = | o8/ (o) =g 14
N {fijaé/<0a> , AFET ()

The system of equations given by Egs. (12) and (13) is now in a form to which we can directly apply the
classic asymptotic diffusion limit scaling of Larsen and Keller [1, 14]. We first introduce the asymptotic
diffusion limit scaling, withe a formal small parametér < ¢ < 1, into Eq. (12):
- b
00+ T 2.0+ 8 ()5 By (10,6 =

v - €

1 - by 1
o8 w0 67D e, 0] [ 02 a s L . 69)

47 — — An a7

€

The small dimensionless parametaran be physically interpreted as the ratio of an initial typical neutron
mean free path to a typical dimension of the spatial domain. Therefore, Eq. (15) describes a system that is
initially optically thick with small, ofO (¢), absorption and sources and weak{xfe), temporal variation
of the angulqr flux. The further spatial and temporal evolution of the material properties is determined by
the functionV (r, t). We next assume that the radioactive decay constants are sm@l(¢pfand
introduce the asymptotic diffusion limit scaling into Egs. (13) to obtain

d - 1 .. .

exN(r,t) = AN (r,t)eX, (r,0) [ ¢ (r,Q,t)dQ2+eA N (r,t) . (16)

SN (0 = e AN )8, (0) | 6 (2,0 d2 + A N (r1)
Egs. (16) describe a system with weak(dfe), temporal variation of the isotopic number densities as a
result of neutron absorption and radioactive decay.

We assume that the neutron angular fluf, 2, t) and the dimensionless isotopic number densities

A

N (r,t) have the following power series expansions in the small parameter

[e.e]

() =D " (1, 21) (17)

n=0

o

N(rt)=> "N, (rt) . (18)

n=0

To proceed, we introduce Egs. (17) and (18) into Eqg. (15) and equate coefficients of like powers of
Collecting the coefficients aP (°) and dividing by common multipliers gives

1
Tr[)U (Ka Qa t) = E o 17[}0 (fa Q/a t) dQ/ . (19)
Eqg. (19) has the isotropic solution
1
@ZJO (i) Q? t) = Eqbo (£7 t) ) (20)
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where the functiorp, (r, t) is currently unspecified. Therefore, the solution of the neutron transport
problem specified by Eq. (15) is isotropic to leading order. The goal of the remainder of the analysis is to
determine the equation that the function(r, ¢) satisfies. Collecting the coefficients(df(el) and using

Egs. (19) and (20) to cancel terms, we obtain

D20 =~ [K] 065,00 Q Yol + - [ o (w0 . @)

47'(' A
Collecting the coefficients aP (?), we obtain
10 T .
;Eiﬁo (Za Qa t) + Q ° ywl (ﬂ? Q? t) + MO (Ka t) ﬂzt (Za 0) ¢2 (B Qv t)

1 .7 A
EMO (r,t) 6% (r, 0) - o (1, ', t) A

1 -
+Mﬂﬁﬁ@&m9/%&ﬁﬁﬂy
4

~T
+ Ml (f7 t) @Et (ﬂv O) ¢1 (za Qa t) =

1 .7 1
——N ) Q Q'+ — . (22
0 (10005, (10) [ w0 (220 d2 + Q1) - (22)

Inserting Eqgs. (19)—(21) into Eqg. (22), operatingﬁu () d©2, and cancelling like terms, we obtain

L - %z- [MOT (r,t) 6e%; (r, 0)}_1&50 (r,t)
+ Ny (r,6) 605 (r,0) 60 (r,1) = Q (r,1) . (23)

Next we introduce Egs. (17) and (18) into Egs. (16) and equate coefficients of like poweGaifecting
the coefficients 0® (e”) and using Eq. (20) gives

9 ety =

ot 4 HAO (ﬂ t) Ea (L 0) ¢0 (L t) + éﬂo (L t) . (24)

Returning to dimensional quantities in Eqgs. (23) and (24), we finally obtain

1

SNT (1) o 220 (1) + Mo (1,0 dado (1,6) = Q11) (25)
V0 Za 1

10
;a¢0 (r,t)—V-

and
O N (z6) = A Ny (£,) 60 (,0) + AN (1,) (25)

Eq. (25) is the standard time-dependent neutron diffusion equation coupled with Egs. (26), the Bateman
equations, describing the temporal evolution of the isotopic number densities as a result of isotopic
depletion and radioactive decay. The asymptotic analysis demonstrates that the standard model for reactor
analysis consisting of the neutron diffusion equation coupled with the Bateman equations is valid for the
situation of an initially optically-thick system with weak absorption, sources, and temporal derivatives of

the angular flux. In addition, the temporal variation of the isotope number densities as a result of absorption
and radioactive decay must be small.
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3. CONCLUSIONS

In this paper, we have described an asymptotic analysis of the coupled nonlinear system of equations
describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and
radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1] was applied to this
coupled nonlinear system of equations in a medium of specified initial isotopic compaosition. The analysis
demonstrates that to leading order the neutron transport equation limits to the standard time-dependent
neutron diffusion equation with macroscopic cross sections whose number densities are determined by the
standard system of ordinary differential equations, the so-called Bateman equations, describing the
temporal evolution of the nuclide number densities. For this asymptotic limit to hold, the temporal

evolution of the isotopic number densities as a result of radioactive decay must be weak.

In future work, we plan to continue the analysis presented in this paper to include asymptotic analyses of
both the initial and the boundary layers. Because most realistic problems include energy dependence
through the multigroup approximation, we also hope to extend our analysis to multigroup neutron transport
problems.
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